Two weeks ago the Canadian government announced the creation of a Federal office for Religious Freedom. It will cost Canadian tax payers $5 million per year.
Many Canadians, including myself, do not believe this is a good money destination.
Many Canadians, including myself, are very disturbed about our government’s slashing of science funding, the elimination of funding for the Environmental Lakes Area the most blatant example.
So the obvious challenge is to come up with better ways to spend $5 million. And because this blog is about (earth) science, I want to restrict the challenge to geoscientific issues.
Below are my three choices for spending $5 million. What about yours? Can we make this a challenge? Can we crowdsource $5 million for the best project?
1. Bottom Water Formation in the Geologic Past
In 2012 the Council of Canadian Academies (www.scienceadvice.ca) produced a report entitled “40 priority research questions for ocean science in Canada”. It is an important document because it contributes to formulating a national ocean science agenda.
Canada borders three oceans and has a longer coastline than any other country in the world. Yet Canada isn’t a full member of the International Ocean Drilling Program (www.iodp.org, to be renamed International Ocean Discovery Program). Canada participates as a member of the European Consortium for Ocean Drilling and has no more rights to set international ocean science research than any European country, large or small.
It cannot be stressed enough how understanding oceans, past and present, is crucial to improving the understanding of our planet and by extension to being good stewards of our planet. So I would happily give $5 million to a project that addresses a question under the general theme ‘How did the oceans function under past climates?’ This is one of the 40 questions articulated in the CCA report. Understanding the formation of Bottom Water (which oxygenates the deep oceans) in the geologic past is particularly important. Today, Bottom water is formed only along Antarctica and in one location in the North Atlantic. The situation today is one with bath-tub shaped N-S oceans, one continent conveniently occupying the South Pole and that continent is – equally conveniently – completely surrounded by oceans. This situation is very different from e.g. the Ordovician-Silurian, just to name an example.
Bottom Water Formation drives oceanic circulation and thus climate. If we don’t understand Bottom Water Formation now, we can’t really begin to model future climates. So a researcher with a particularly novel project addresses this question can count on my $5 million.
2. Fluid flow in (non)porous media.
This is a pragmatic research topic. The exploding production of unconventional oil and gas has parties digging their trenches and I don’t believe we understand the issues at hand well enough to make any judgements at all. Not only do we not really know how well we can make oil and gas flow through shale, we also don’t understand the exchange between deep and shallow groundwater reservoirs well enough. Clearly this topic needs massive amounts of research as we already know that we have massive reserves and these reserves could well help us bridge the period to a carbon-poor energy future. See my February 16 post.
3. The Sediment Budget of Minas Basin
Minas Basin is the eastern arm of the Bay of Fundy (see my posts of December 13 and 20, 2012). The Bay of Fundy separates Nova Scotia from mainland Canada and Minas Basin separates Nova Scotia’s southern mainland from its northern mainland. I live at the southern tip of Minas Basin in the picturesque town of Wolfville.
Minas Basin has the world’s highest recorded tides. running as much as 18 m tide range. A decent image and write-up is here: http://oceanservice.noaa.gov/education/yos/resource/JetStream/ocean/fundy_max.htmThe narrow passage that separates Minas Basin from the Bay of Fundy is called Minas Passage. It is about 4 km wide. More water goes through this passage twice a day than all major rivers of the world deliver to the sea daily. This is not an urban myth, it’s the documented truth. A very good animation of the tides is at http://www.gio.gc.ca/science/research-recherche/ocean/modelling-modelisation/coastalembayments-cotieresdesbaies/images/minas-3-eng.gif. Go to the bottom of the page
People have thought about generating power from these tides for more than 100 years, most recently since 2005. If you would install hundreds of tidal turbines in Minas Passage, you would reduce the current (about 10 cm/sec max) and that would affect sedimentation. Sedimentation in Minas Basin is poorly understood because the environment is so hostile. The one and only attempt at a sediment budget for Minas Basin was published by Amos and Alfoldi in 1979 (full reference below). That sediment budget estimate is one of the best ‘back of an envelope’ exercises known to mankind, but we really need more precise numbers now. Not only because of the potential effects of tidal power development, but also because of potential changes estuarine dynamics caused by climate change. $5 million would probably answer the question.
So, these are my three choices for spending $5 million Federal dollars. Do you have a better proposal?
Amos, C.L. and T.T. Alfoldi, 1979, The determination of suspended sediment in a macrotidal system using Landsat data. Journal of Sedimentary Petrology v. 49, no. 1, p. 159-17